Overview of Drug Targets in Key Therapeutic Areas

Dr. Jean Chatellier, PhD (December 2024)

Executive Summary – This document offers an in-depth analysis of molecular drug targets in key therapeutic areas, including oncology, immunology, neuroscience, and rare diseases. It highlights emerging trends such as the rise of personalized medicine, RNA-based therapeutics, disease-modifying strategies, and innovative technologies like gene therapies and platform-based discovery approaches. By examining both established and investigational agents, the analysis reveals a dynamic landscape characterized by breakthroughs in immunotherapies, combination regimens, and novel modalities. This summary emphasizes the transformative potential of these advancements in addressing unmet medical needs and driving the future of pharmaceutical innovation.

Introduction – The rapid evolution of therapeutic modalities has revolutionized drug discovery and development, addressing complex diseases with unprecedented precision and efficacy. This document provides a comprehensive overview of molecular targets across oncology, immunology, neuroscience, and rare diseases, showcasing the interplay of established and emerging strategies. By highlighting trends such as biomarker-driven approaches, RNA-based therapeutics, and disease-modifying therapies, it underscores the pivotal role of scientific innovation in advancing patient care. This resource aims to serve as a reference for understanding current and future pharmaceutical trends, offering insights into the mechanisms and technologies shaping the industry's trajectory.

Trends to Highlight in Drug Development Across Therapeutic Areas – The field of drug development is experiencing transformative advancements across multiple therapeutic areas, driven by innovation and a deeper understanding of disease mechanisms. This document highlights the emerging trends that are reshaping the industry, emphasizing their impact on the future of patient care. These trends are explored below.

- **1. Personalized Medicine** The advent of precision medicine has revolutionized therapeutic strategies, focusing on tailoring treatments to individual patients. Advances in molecular profiling and geneediting technologies have enabled targeted interventions for specific genetic mutations and rare diseases, paving the way for highly personalized approaches.
 - **Biomarker-Driven Approaches**: In oncology, molecular profiling of tumors has led to therapies targeting specific mutations (e.g., EGFR, KRAS G12C) and tumor-associated antigens (e.g., HER2, PD-1/PD-L1).
 - **Gene Therapy**: Advances in gene-editing tools and delivery mechanisms are enabling personalized interventions for rare diseases (e.g., ADA-SCID and Fabry disease).
 - **Economic Implications**: The rise of personalized medicine brings substantial benefits but also poses economic challenges. The costs associated with molecular profiling, genetic testing, and the development of targeted therapies can be prohibitively high. For example, CAR-T cell therapies, despite their efficacy, come with a price tag exceeding hundreds of thousands of dollars per treatment. To address this, innovative pricing and reimbursement models, such as value-based pricing and outcome-driven contracts, are being explored.

Governments and payers must collaborate with industry stakeholders to implement strategies that align the cost of innovation with broader healthcare budgets, ensuring that precision therapies reach the patients who need them most. Additionally, leveraging digital health tools to track real-world outcomes can support the shift to value-based care.

- **2.** Emergence of RNA-Based Therapeutics RNA-based technologies have emerged as powerful tools in drug development, offering new possibilities for treating previously intractable or rare conditions. The application of RNA vaccines and mRNA technologies in diverse areas highlights the versatility and potential of this innovative therapeutic class.
 - Antisense oligonucleotides and RNAi-based therapies (e.g., Tominersen for Huntington's disease and Inclisiran for hypercholesterolemia) are expanding options for previously untreatable or rare genetic conditions.
 - RNA vaccines and mRNA technologies, initially applied in infectious diseases, are being explored for cancer immunotherapy and rare metabolic disorders.
- **3. Patient-Centric Approaches** Patient-centricity is becoming a cornerstone of modern drug development, complementing advancements in personalized medicine. Integrating digital health tools, such as wearable devices and remote monitoring technologies, allows for the collection of real-world evidence to refine therapeutic approaches. For instance, wearable biosensors that monitor glucose levels or heart rhythms in real-time have revolutionized chronic disease management. These tools empower patients to actively participate in their care while enabling clinicians to tailor treatments based on real-time data.

By aligning drug development with patient lifestyles and preferences, the industry can enhance therapeutic adherence and outcomes, paving the way for more effective and holistic treatment paradigms. Furthermore, direct patient feedback through digital platforms can inform iterative improvements in drug design and clinical trial frameworks.

- **4. Disease-Modifying Therapies** A paradigm shift in drug development is evident with the focus on modifying disease progression rather than merely managing symptoms. This approach is gaining traction, particularly in neurodegenerative diseases and complement-mediated conditions, offering new hope for transformative outcomes.
 - A shift toward altering disease progression is evident in neurodegenerative diseases, with agents targeting amyloid-beta, tau protein, and α -synuclein gaining traction.
 - Complement inhibitors (e.g., MASP-2 and C5 inhibitors) are revolutionizing the management of complement-mediated diseases, such as aHUS and PNH.
- **5. Expansion of Immunotherapies** Innovations in immunotherapy are expanding beyond conventional targets, offering diverse and promising avenues for treating cancer and autoimmune diseases. The rise of CAR-T and TCR therapies exemplifies the advances in cellular engineering that are pushing the boundaries of therapeutic possibilities.
 - Beyond traditional immune-oncology targets like PD-1 and CTLA-4, the development of novel immunotherapies (e.g., ILT7 and IL-36R) is diversifying therapeutic options in autoimmune diseases and oncology.
 - CAR-T and TCR therapies are expanding into hematological malignancies and solid tumors, reflecting innovations in cellular engineering.
- **6. Combination Therapies** Synergistic combinations of drugs are becoming a cornerstone of treatment in oncology and autoimmune diseases. These approaches harness complementary mechanisms to enhance efficacy and overcome therapeutic resistance, underscoring their growing importance in modern medicine.
 - Combination regimens are becoming standard practice in oncology, leveraging synergistic effects of immune checkpoint inhibitors, targeted therapies, and chemotherapeutics.

- In inflammatory and autoimmune diseases, dual inhibitors (e.g., IL-4/IL-13 antagonists) are targeting overlapping pathways to enhance efficacy.
- **7. Platform Technologies** The integration of cutting-edge platforms such as CRISPR-Cas9, mRNA technology, and modular biologics design is revolutionizing drug discovery and production. These scalable and versatile platforms are enabling the rapid development of next-generation therapeutics.
 - Platform-based drug discovery, including mRNA technology, CRISPR-Cas9 gene editing, and advanced biologics engineering, is enabling rapid, scalable development of therapeutics.
 - Bispecific antibodies, antibody-drug conjugates (ADCs), and next-generation vaccines are emerging from modular design platforms.
- **8.** Increased Focus on Rare Diseases Advances in diagnostics, drug delivery, and regulatory incentives have catalyzed significant progress in rare disease therapies. This focus has resulted in innovative treatments targeting unmet needs in previously underserved conditions, driving new opportunities in this critical area.
 - Enhanced regulatory incentives and the development of orphan drugs have spurred significant investment in rare disease therapies, including enzyme replacement, gene therapy, and small molecule chaperones.
 - Advances in drug delivery and diagnostics are addressing unmet needs in previously overlooked conditions, such as Krabbe disease and SMA.
- **9. Socio-Political Factors** Global health initiatives and policy frameworks play a pivotal role in shaping the adoption of innovative therapies. Regulations like the Orphan Drug Act have spurred significant advancements in rare disease research by offering incentives such as tax credits and market exclusivity. However, these frameworks often remain inaccessible to low- and middle-income countries, where healthcare systems are underfunded.

Extending similar frameworks to these regions could accelerate access to life-saving treatments, fostering equity in global healthcare. International organizations like the World Health Organization (WHO) and Gavi, the Vaccine Alliance, can facilitate this process by creating funding mechanisms and technical support systems to introduce high-cost therapies in resource-limited settings. The interplay of healthcare policies, public-private partnerships, and international collaborations will be critical in addressing systemic barriers and maximizing the reach of pharmaceutical innovations.

These key trends illustrate the sophistication and precision that are shaping the future of drug development, enabling more effective and patient-centric treatments across a broad spectrum of therapeutic challenges.

Implementation Challenges – As drug development continues to evolve, the transition from laboratory innovation to real-world application presents significant hurdles. Regulatory frameworks for novel modalities, such as RNA-based therapeutics and gene-editing tools, are complex and still maturing. For example, therapies like CRISPR-based treatments have encountered uncertainties in regulatory guidance regarding long-term safety monitoring and ethical concerns, slowing their approval processes. Similarly, CAR-T therapies face rigorous standards for manufacturing consistency and clinical data validation before gaining widespread approval.

Manufacturing challenges further complicate the landscape, particularly for therapies like CAR-T, gene therapies, and mRNA platforms. Scalability and cost-efficiency remain significant barriers, with the production of personalized or small-batch treatments demanding innovative solutions. Additionally,

equitable access to advanced therapies is an ongoing challenge, especially in low- and middle-income countries, where healthcare infrastructure and funding may not support widespread adoption. Collaborations between governments and global health organizations are crucial to bridge these gaps and expand the reach of advanced therapies.

Oncology and Immuno-Oncology — Oncology and immuno-oncology have witnessed remarkable advancements, driven by breakthroughs in understanding tumor biology and immune mechanisms. This section presents a detailed overview of drug targets, capturing the landscape of both approved and investigational therapies. Key trends in this area highlight the growing diversity and sophistication of therapeutic strategies.

- Established Tumor-Associated Antigens (TAAs) A significant focus of oncology drug development has been on targeting well-characterized TAAs, such as PD-1/PD-L1, HER2, and EGFR. These efforts have yielded groundbreaking therapies that have redefined standards of care across multiple cancer types. The tables provided illustrate the robust pipeline of investigational agents, underscoring the continued exploration of these critical pathways.
- Innovative Modalities in Oncology and Immunotherapy Emerging therapeutic modalities, such as oncolytic viruses, TLR agonists, and cancer vaccines, represent the cutting edge of oncology research. These approaches aim to enhance immune activation and precision targeting, offering new hope for treatment-resistant tumors. Bi-specific T-cell engagers (BiTEs), antibody-drug conjugates (ADCs), and epigenetic modulators are expanding the toolkit for oncologists, leveraging advanced engineering and molecular targeting to improve outcomes.

Together, these developments showcase a dynamic field that is pushing the boundaries of what is possible in cancer treatment. The integration of traditional and novel therapeutic platforms highlights a holistic approach to combating cancer through diverse and innovative mechanisms. These trends promise to shape the future of oncology, addressing critical unmet needs and transforming patient care.

The following tables provide a comprehensive overview of oncology and immunology drug targets, detailing both established and emerging therapeutic approaches. **Table 1a** lists approved drugs and investigational agents targeting key tumor-associated antigens (TAAs), while **Table 1b** highlights novel modalities, including TLR agonists, oncolytic viruses, and cancer vaccines. Together, these tables showcase the dynamic landscape of drug development aimed at combating cancer through diverse biological mechanisms and innovative platforms.

Table 1a: Approved and Investigational Drugs Targeting Key Tumor-Associated Antigens (TAAs)

Target/TAA	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Tumor Types
PD-1/PD-L1	Biological (mAbs)	Pembrolizumab, Nivolumab, Atezolizumab, Durvalumab	Merck (Keytruda), BMS (Opdivo), Genentech (Tecentriq), AstraZeneca (Imfinzi)	Cemiplimab (Approved, Regeneron), Relatlimab (Phase III, BMS)	Melanoma, NSCLC, RCC, HCC, others
CTLA-4	Biological (mAbs)	Ipilimumab	Bristol Myers Squibb	Tremelimumab (Phase III, AstraZeneca)	Melanoma, NSCLC, others
HER2/ERBB2	Biological (mAbs, ADCs)	Trastuzumab, Pertuzumab, T-DXd (Enhertu) zanidatamab	Genentech (Herceptin, Perjeta), Daiichi Sankyo	Zanidatamab (Phase III, Zymeworks), Margetuximab (Phase III, MacroGenics)	Breast, gastric, biliary tract cancer, others

Target/TAA	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Tumor Types
			& AstraZeneca (Enhertu) Jazz Pharma. (Ziihera)		
EGFR	Chemical (TKIs), Biological (mAbs)	Erlotinib, Gefitinib, Cetuximab, Cosibelimab	Genentech (Tarceva), AstraZeneca (Iressa), ImClone Systems (Erbitux) Checkpoint (Unloxcyt)	Patritumab Deruxtecan (Phase II, Daiichi Sankyo), Mobocertinib (Phase II, Takeda)	NSCLC, colorectal, Cutaneous SCC
BCR-ABL	Chemical (TKIs)	Imatinib, Dasatinib, Nilotinib	Novartis (Gleevec), BMS (Sprycel), Novartis (Tasigna)	Asciminib (Approved, Novartis)	CML, ALL
VEGF/VEGFR	Biological (mAbs), Chemical (TKIs)	Bevacizumab, Axitinib, Pazopanib		Ramucirumab (Approved, Eli Lilly)	RCC, colorectal, others
CD19	Biological (CAR-T, ADCs, mAbs)	Axicabtagene Ciloleucel, Tisagenlecleucel, Loncastuximab, Obecabtagene autoleucel	Kite Pharma (Yescarta), Novartis (Kymriah), ADC Therapeutics (Zynlonta) Autolus Therapeutics (Aucatzyl)	Blinatumomab (Approved, Amgen) Epcoritamab (Phase II, Genmab & AbbVie)	B-cell lymphomas, Relapsed/refractory B- cell ALL
CD20	Biological (mAbs)	Rituximab, Obinutuzumab, Ofatumumab	Genentech (Rituxan), Genentech (Gazyva), Novartis (Arzerra)	Liso-cel (Approved, BMS), Ublituximab (Phase III, TG Therapeutics)	B-cell lymphomas, CLL
CD22	Biological (ADCs)	Inotuzumab Ozogamicin	Pfizer (Besponsa)	Lintuzumab (Phase II, Actinium Pharmaceuticals)	ALL, B-cell lymphomas
CD38	Biological (mAbs)	Daratumumab, Isatuximab	Janssen (Darzalex), Sanofi (Sarclisa)	MOR202 (Phase II, Morphosys)	Multiple myeloma
всма	Biological (CAR-T, bispecifics)	Ide-cel, Cilta-cel, Idecabtagene vicleucel	BMS & Bluebird Bio (Abecma), Janssen & Legend Biotech (Carvykti)	Abecma (Approved Bristol Myers Squibb) Elranatamab (Phase II, Pfizer), Teclistamab (Phase II, Janssen)	Multiple myeloma
PSMA	Biological (ADCs, radiopharmaceuticals)	Lutetium-177 PSMA-617	Novartis (Pluvicto)	Mipsagargin (Phase II, GenSpera)	Prostate cancer

Target/TAA	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Tumor Types
КМТ2А	Chemical	Revumenib	Syndax (Revuforj	-	Acute leukemia
ALK	Chemical (TKIs)	Crizotinib, Alectinib, Lorlatinib Ensartinib	Pfizer (Xalkori), Roche (Alecensa), Pfizer (Lorbrena) Xcovery (Ensacove)	Ensartinib (Phase III, Xcovery), Brigatinib (Approved, Takeda)	NSCLC
KRAS G12C	Chemical (covalent inhibitors)	Sotorasib, Adagrasib	Amgen (Lumakras), Mirati Therapeutics (Krazati)	JDQ443 (Phase II, Novartis), RMC-6291 (Phase I, Revolution Medicines)	NSCLC, colorectal
CEA	Biological (bispecifics, ADCs)	None	-	CEA-TCB (Phase II, Genentech), SAR408701 (Phase II, Sanofi)	Colorectal, others
Claudin 18.2	Biological (mAbs, ADCs)	None	-	Zolbetuximab (Phase III, Astellas), IMAB362 (Phase III, Ganymed/Boehringer), BNT141 (Phase I, BioNTech)	Gastric, pancreatic
TROP2	Biological (ADCs)	Sacituzumab Govitecan	Gilead (Trodelvy)	Datopotamab Deruxtecan (Phase III, Daiichi Sankyo & AstraZeneca)	Breast, NSCLC, others
NRG1	Biological (mAbs)	Zenocutuzumab	Merus (Bizengri)	-	NSCLC, pancreatic cancer
LAG-3	Biological (mAbs)	Relatlimab (Approved in combination with Nivolumab)	Bristol Myers Squibb	Eftilagimod Alpha (Phase II, Immutep), Tebotelimab (Phase II, GSK)	Melanoma, others
TIGIT	Biological (mAbs)	None	-	Tiragolumab (Phase III, Genentech), Vibostolimab (Phase II, Merck)	NSCLC, others
TIM-3	Biological (mAbs)	None	-	Sabatolimab (Phase II, Novartis), TSR-022 (Phase I, Tesaro/GSK)	AML, MDS, solid tumors
Globo H	Biological (vaccines, mAbs)	None	-	Adagloxad Simolenin (OBI-822) (Phase III, OBI Pharma), OBI-888 (Phase I/II, OBI Pharma)	Breast, lung, gastric, others
Cadherin-6 (CDH6)	Biological (ADCs)	None	-	Raludotatug Deruxtecan (DS-6000) (Phase I, Daiichi Sankyo)	Ovarian, renal cancers
Glypican-3 (GPC3)	Biological (CAR-T, mAbs)	None	-	Codrituzumab (Phase II, Chugai), GPC3-CAR-T (Phase I, Eureka Therapeutics)	Hepatocellular carcinoma (HCC)
NY-ESO-1	Biological (TCR-T, vaccines)	None	-	Adaptimmune's TCR therapies (Phase II)	Sarcomas, lung cancer

Target/TAA	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Tumor Types
WT1	Biological (vaccines, TCRs)	None	-	WT1 TCR-T (Phase I, Astellas)	Leukemias, mesothelioma
MUC1	Biological (vaccines, mAbs)	None (approved vaccines in trials)	-	GO-203 (Phase I, Genus Oncology), MUC1 CAR-T (Phase I, Precigen)	Breast, ovarian, pancreatic
GP100	Biological (immunotherapy)	Tebentafusp	Immunocore (Kimmtrak)	None reported	Uveal melanoma

Table 1b: Emerging Modalities in Oncology and Immunotherapy

Target/TAA	Drug Type	Examples of Drugs in Development	Stage	Tumor Types
TLR agonists	Small molecules	SD-101	Phase I/II	Melanoma, solid tumors
Oncolytic viruses	Biological (viruses)	T-VEC (Imlygic), RP1	Approved (T-VEC), Phase II (RP1)	Melanoma, solid tumors
Cancer vaccines	Biological (vaccines)	mRNA-4157 (Moderna), GVAX	Phase II/III	Melanoma, prostate
Epigenetic modulators	Small molecules	Tazemetostat, Decitabine	Approved (Tazemetostat, Decitabine)	Lymphomas, AML
Bi-specific T-cell engagers (BiTEs)	Biological (bispecific mAbs)	Blinatumomab	Approved	B-cell ALL
Antibody-drug conjugates (ADCs)	Biological (ADCs)	Enhertu, Polivy	Approved	Breast, NHL

Immunology and Inflammation – Table 2 provides a comprehensive overview of molecular targets in immunology and inflammation, highlighting both approved drugs and investigational agents. It illustrates the diversity of therapeutic strategies targeting critical cytokines, receptors, and signaling pathways involved in immune modulation and inflammatory diseases.

This table serves as a resource for understanding the current therapeutic landscape and the ongoing innovation addressing unmet medical needs in immunology and inflammation.

- **Established Targets**: Well-characterized targets such as TNF-α, IL-6, IL-17, and IL-23 have multiple approved biologics, demonstrating efficacy in conditions like rheumatoid arthritis (RA), psoriasis, and inflammatory bowel disease (IBD).
- Emerging Targets: Novel agents targeting IL-36R (e.g., Spesolimab for generalized pustular psoriasis) and MASP-2 (e.g., Narsoplimab for complement-mediated diseases) represent promising advancements in less explored pathways.
- **Expanding Modalities**: The rise of anti-cytokine monoclonal antibodies (mAbs), JAK inhibitors, and S1P receptor modulators highlights the evolution from biologics to small molecules, offering flexibility in treatment options.
- Innovative Therapies: Drugs like ILT7-targeting antibodies (e.g., Daxdilimab) and anti-Siglec-8 agents (e.g., AK002) are under development for niche indications such as systemic lupus erythematosus (SLE) and eosinophilic gastrointestinal disorders.

Table2: Molecular Targets in Immunology and Inflammation

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
TNF-α	Biological (mAbs)	Adalimumab, Infliximab, Etanercept, Ustékinumab	AbbVie (Humira), J&J (Remicade), Amgen (Enbrel), Celltrion (Steqeyma)	Golimumab (Approved), Certolizumab Pegol (Approved)	RA, Psoriasis, Crohn's Disease, UC
IL-6/IL-6R	Biological (mAbs)	Tocilizumab, Sarilumab	Roche (Actemra), Sanofi (Kevzara)	Olokizumab (Phase III), Clazakizumab (Phase II)	RA, Giant Cell Arteritis, Cytokine Storm
IL-1/IL-1R	Biological (mAbs)	Anakinra, Canakinumab	Sobi (Kineret), Novartis (Ilaris)	Emapalumab (Phase II)	RA, CAPS, Still's Disease, Gouty Arthritis
IL-17/IL-17R	Biological (mAbs)	Secukinumab, Ixekizumab	Novartis (Cosentyx), Lilly (Taltz)	Bimekizumab (Approved, UCB), Brodalumab (Approved, Amgen)	Psoriasis, Psoriatic Arthritis, Ankylosing Spondylitis
IL-23/IL-12	Biological (mAbs)	Ustekinumab	Janssen (Stelara)	Guselkumab (Approved), Risankizumab (Approved)	Psoriasis, Crohn's Disease, Psoriatic Arthritis
IL-23	Biological (mAbs)	Risankizumab, Guselkumab	AbbVie (Skyrizi), Janssen (Tremfya)	Mirikizumab (Phase III, Lilly)	Psoriasis, Crohn's Disease
IL-4/IL-13	Biological (mAbs)	Dupilumab	Sanofi/Regeneron (Dupixent)	Lebrikizumab (Phase III, Lilly), Tralokinumab (Approved, LEO Pharma)	Atopic Dermatitis, Asthma, Eosinophilic Esophagitis
JAK1/JAK2/JAK3/ TYK2	Chemical (JAK inhibitors)	Tofacitinib, Baricitinib, Upadacitinib	Pfizer (Xeljanz), Lilly (Olumiant), AbbVie (Rinvoq)	Deucravacitinib (Approved, BMS), Filgotinib (Phase III, Gilead/Galapagos)	RA, Psoriasis, UC, Crohn's Disease
втк	Chemical (BTK inhibitors)	Ibrutinib, Acalabrutinib	AbbVie/J&J (Imbruvica), AstraZeneca (Calquence)	Fenebrutinib (Phase II, Roche), Branebrutinib (Phase II, BMS)	RA, Lupus, Multiple Sclerosis
S1P Receptor	Chemical (S1P modulators)	Fingolimod, Ozanimod	Novartis (Gilenya), BMS (Zeposia)	Etrasimod (Phase III, Arena/Pfizer)	MS, UC
CD20	Biological (mAbs)	Rituximab, Ocrelizumab	Genentech (Rituxan, Ocrevus)	Ofatumumab (Approved, Novartis)	MS, RA, Lupus Nephritis
BAFF/BLyS	Biological (mAbs)	Belimumab	GSK (Benlysta)	Telitacicept (Phase III, RemeGen), Atacicept (Phase II, Merck KGaA)	Lupus, Sjögren's Syndrome
IL-5/IL-5R	Biological (mAbs)	Mepolizumab, Benralizumab	GSK (Nucala), AstraZeneca (Fasenra)	Reslizumab (Approved, Teva)	Asthma, Eosinophilic Granulomatosis
TSLP	Biological (mAbs)	Tezepelumab	Amgen/AstraZeneca (Tezspire)	None reported	Asthma
GM-CSF	Biological (mAbs)	None	-	Mavrilimumab (Phase III, Kiniksa), Namilumab (Phase II, Izana)	RA, Giant Cell Arteritis

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
CCR4	Biological (mAbs)	Mogamulizumab	Kyowa Kirin (Poteligeo)	None reported	Cutaneous T-cell Lymphoma
CD52	Biological (mAbs)	Alemtuzumab	Genzyme (Lemtrada)	None reported	MS
MASP-2	Biological (mAbs)	None	-	Narsoplimab (Phase III, Omeros)	HSCT-TMA, IgA Nephropathy, aHUS
ILT7	Biological (mAbs)	None	-	Daxdilimab (Phase II, Horizon), VIB7734 (Phase II, Horizon)	SLE, CLE
IL-36R	Biological (mAbs)	None	-	Spesolimab (Approved, Boehringer Ingelheim)	Generalized Pustular Psoriasis
IL-2Rα (CD25)	Biological (mAbs)	Basiliximab, Daclizumab	Novartis (Simulect), Biogen (Zinbryta)	None reported	Transplant Rejection, MS
IL-31R	Biological (mAbs)	None	-	Nemolizumab (Phase III, Galderma)	Atopic Dermatitis, Prurigo Nodularis
OX40	Biological (mAbs)	None	-	KHK4083 (Phase II, Kyowa Kirin)	Atopic Dermatitis
TLR7/8	Chemical (Antagonists)	None	-	IMO-8400 (Phase II, Acuragen)	Psoriasis, Dermatomyositis
Siglec-8	Biological (mAbs)	None	-	AK002 (Phase II, Allakos)	Eosinophilic Gastritis, Chronic Urticaria

Neuroscience – Table 3 provides a comprehensive overview of molecular targets in **neuroscience**, categorized into **neurodegenerative diseases** and **psychiatric diseases**, highlighting the diversity of therapeutic approaches for addressing unmet needs in these fields.

Neurodegenerative Diseases:

Key Targets:

- o **Amyloid-beta (Aβ)** and **Tau protein** remain central to Alzheimer's disease drug development, with agents like Aducanumab (approved) and Donanemab (in development) targeting disease-modifying pathways.
- \circ **\alpha-Synuclein** and **LRRK2** are emerging targets in Parkinson's disease, reflecting advances in addressing underlying pathology.
- S1P Receptor modulators (e.g., Fingolimod, Siponimod) are established therapies in multiple sclerosis, with newer agents such as Ponesimod expanding treatment options.
- o Targets like **CGRP** have revolutionized migraine treatment, while **NMDA Receptor antagonists** (e.g., Memantine) address cognitive symptoms.

• Innovative Modalities:

 Research into BDNF mimetics and Glucocerebrosidase (GBA) modulators is opening new avenues for conditions like ALS and Parkinson's disease.

Psychiatric Diseases:

• Established Mechanisms:

- Serotonin receptors (e.g., 5-HT2A/2C) and Dopamine D2/D3 receptors are the backbone of therapies for depression, schizophrenia, and bipolar disorder, with approved drugs like Fluoxetine and Aripiprazole.
- Modulators of GABA-A receptors and Glutamate pathways offer alternative mechanisms for anxiety, epilepsy, and treatment-resistant depression.

Emerging Therapies:

- Novel approaches such as Orexin receptor antagonists (e.g., Daridorexant for insomnia) and Histamine H3 receptor antagonists (e.g., Pitolisant for narcolepsy) target underexplored pathways.
- o **Endocannabinoid system modulators** and **Sigma-1 receptor agonists** are in early stages of development for conditions like anxiety, pain, and Huntington's disease.

Overall Trends:

- **Disease-Modifying Therapies**: In neurodegenerative diseases, the focus is shifting toward altering disease progression rather than managing symptoms.
- Precision Psychiatry: Targeted therapies, such as psilocybin (5-HT2A agonist) and novel GABA/glutamate modulators, are paving the way for personalized treatment approaches in psychiatric disorders.

Table 3: Molecular Targets in Neuroscience

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
	Ne	urodegenerative	Diseases		
Amyloid-beta (Αβ)	Biological (mAbs)	Aducanumab, Lecanemab	Biogen (Aduhelm), Eisai/Biogen	Donanemab (Phase III, Lilly), Crenezumab (Phase II, Roche)	Alzheimer's Disease
Tau protein	Biological (mAbs)	None	-	Semorinemab (Phase II, Roche), Zagotenemab (Phase II, Lilly)	Alzheimer's, PSP
α-Synuclein	Biological (mAbs)	None	-	Prasinezumab (Phase II, Roche), BIB101 (Phase I, Biogen)	Parkinson's Disease, DLB
LRRK2	Chemical (Kinase inhibitors)	None	-	DNL151 (Phase I/II, Denali), BIIB122 (Phase II, Biogen/Denali)	Parkinson's Disease
S1P Receptor	Chemical (S1P modulators)	Fingolimod, Siponimod	Novartis (Gilenya, Mayzent)	Ponesimod (Approved, Janssen)	Multiple Sclerosis
CGRP	Biological (mAbs)	Erenumab, Fremanezumab, Galcanezumab	Novartis (Aimovig), Teva (Ajovy), Lilly (Emgality)	Eptinezumab (Approved, Lundbeck)	Migraine
NMDA Receptor	Chemical (Antagonists)	Memantine	Lundbeck (Ebixa)	Aptinyx NYX-458 (Phase II, Aptinyx)	Alzheimer's, Cognitive Disorders

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
сомт	Chemical (Inhibitors)	Entacapone, Opicapone			Parkinson's Disease
МАО-В	Chemical (Inhibitors)	Rasagiline, Selegiline	Teva (Azilect), Orion Pharma	Safinamide (Approved, Zambon)	Parkinson's Disease
GBA (Glucocerebrosidase)	Chemical (Small molecules)	None	-	Ambroxol (Phase II, Several sponsors)	Parkinson's Disease
BDNF	Biological (Peptides)	None	-	BDNF Mimetic (Phase I, Neuren Pharma)	ALS, Alzheimer's
CRF1 Receptor	Biological	Crinecerfont	Neurocrine (Crenessity)	-	Congenital adrenal hyperplasia
		Psychiatric Dis	eases		
Serotonin (5- HT1A/2A/2C)	Chemical (Agonists/Antagonists)	Fluoxetine, Sertraline, Clozapine	Lilly (Prozac), Pfizer (Zoloft), Novartis (Clozaril)	Psilocybin (Phase II, COMPASS Pathways), Pimavanserin (Approved, Acadia)	Depression, Schizophrenia, Psychosis
Dopamine D2/D3 Receptors	Chemical (Agonists/Antagonists)	Aripiprazole, Quetiapine	Otsuka (Abilify), AstraZeneca (Seroquel)	Cariprazine (Approved, AbbVie), Lumateperone (Approved, Intra- Cellular)	Schizophrenia, Bipolar Disorder
GABA-A Receptor	Chemical (Modulators)	Diazepam, Clobazam	Roche (Valium), Lundbeck (Onfi)	Ganaxolone (Approved, Marinus), SAGE- 217 (Phase III, Sage Therapeutics)	Anxiety, Epilepsy, Depression
Glutamate (AMPA/NMDA)	Chemical (Antagonists/Modulators)	Esketamine, Riluzole	J&J (Spravato), Sanofi (Rilutek)	Apimostinel (Phase III, Gate Neurosciences), Rapastinel (Phase II, Allergan)	Depression, ALS
Orexin Receptors (OX1/OX2)	Chemical (Antagonists)	Suvorexant, Lemborexant	Merck (Belsomra), Eisai (Dayvigo)	Daridorexant (Approved, Idorsia)	Insomnia
Histamine H3	Chemical (Antagonists)	Pitolisant	Bioprojet (Wakix)	None reported	Narcolepsy, Cognitive Disorders
Monoamine Transporters	Chemical (Inhibitors)	Bupropion, Atomoxetine	GSK (Wellbutrin), Lilly (Strattera)	None reported	ADHD, Depression

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
Sigma-1 Receptor	Chemical (Agonists)	None	-	Pridopidine (Phase II, Prilenia Therapeutics)	Huntington's Disease, Depression
Endocannabinoid System (CB1/CB2)	Chemical (Modulators)	None	-	JNJ-42165279 (Phase I, Janssen)	Anxiety, Pain
M1/4 muscarinic acetylcholine receptors	Chemical (Agonist)	None	-	Xanomeline (Approval Pending, Karuna)	Schizophrenia

Rare Diseases – Table 4 summarizes the molecular targets associated with drugs for rare diseases, reflecting the dynamic landscape of therapeutic innovation. The categorization highlights the range of therapeutic modalities addressing genetic, metabolic, and immune-mediated disorders. This summary underscores the significant strides in rare disease therapeutics, showcasing novel mechanisms and pioneering modalities that aim to address substantial unmet medical needs.

• Complement System:

- C5 inhibitors like Eculizumab and Ravulizumab revolutionized treatment for diseases such as PNH and aHUS.
- Emerging targets, including C1q (e.g., ANX005), are expanding complement-targeting therapies into neurological rare diseases.

• Gene Therapies:

 Breakthroughs in gene therapy include Voretigene neparvovec for Leber Congenital Amaurosis and ongoing development for Hereditary Tyrosinemia Type I and Sickle Cell Disease.

• Splicing Modifiers and Enzyme Replacement:

 Drugs like Nusinersen and Risdiplam target SMN2 splicing in SMA, while enzyme replacement therapies continue to dominate lysosomal storage disorders (e.g., Gaucher and Pompe diseases).

• RNA-Based Therapies:

o Innovative approaches like antisense oligonucleotides (e.g., Inotersen for ATTR amyloidosis) provide precise disease-modifying strategies.

• Expanding Applications:

 Targets such as ASGR1/2 and CD40L open new avenues for treating rare autoimmune and hematological diseases.

Table 4: Molecular Targets in Rare Diseases

Target	Drug Type	ug Type Approved Originator		Drugs in Development (Stage)	Indications			
Enzyme Replacement and Modulation								
GBA (Glucocerebrosidase)	Chemical (Small Molecules)	Eliglustat (Cerdelga)	Sanofi	Venglustat (Phase II, Sanofi)	Gaucher Disease			

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
IDUA (Alpha-L- Iduronidase)	Biological (Enzyme replacement)	Laronidase (Aldurazyme)	BioMarin	None reported	Mucopolysaccharidosis Type I (MPS I)
GALC (Galactocerebrosidase)	Gene Therapy	None	-	PBGM01 (Phase I/II, Passage Bio)	Krabbe Disease
C1 Esterase Inhibitor	Biological (Plasma-derived, recombinant)	Berinert, Ruconest	CSL Behring (Berinert), Pharming (Ruconest)	None reported	Hereditary Angioedema
ADA (Adenosine Deaminase)	Gene Therapy	None	-	OTL-101 (Phase I/II, Orchard Therapeutics)	Severe Combined Immunodeficiency (SCID)
TTR (Transthyretin)	Chemical (Stabilizers)	Tafamidis (Vyndaqel)	Pfizer	Acoramidis (Phase III, BridgeBio), Eplontersen (Phase III, Ionis/AstraZeneca)	Amyloidosis
C5 Complement	Biological (mAbs)	Eculizumab (Soliris), Ravulizumab (Ultomiris)	Alexion	Crovalimab (Phase III, Roche), Tesidolumab (Phase II, Novartis)	Paroxysmal Nocturnal Hemoglobinuria (PNH), aHUS
MASP-2	Biological (mAbs)	None	-	Narsoplimab (Phase III, Omeros)	Hematopoietic Stem Cell Transplant-TMA
Galactose-1-Phosphate Uridyltransferase	Gene Therapy	None	-	FLT190 (Phase I, Freeline Therapeutics)	Fabry Disease
Transthyretin	Gene Therapy	Attruby (acoramidis)		None reported	Transthyretin amyloidosis cardiomyopathy (ATTR-CM)
		Metab	olic Pathwa	ays	
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)	Small Molecule Modulators	Ivacaftor, Lumacaftor, Elexacaftor	Vertex	None reported	Cystic Fibrosis
Phenylalanine Hydroxylase	Enzyme Substitution	Pegvaliase (Palynziq)	BioMarin	None reported	Phenylketonuria
LDLR, PCSK9	Biological (mAbs), RNAi	Evolocumab (Repatha), Inclisiran (Leqvio)	Amgen, Novartis	None reported	Homozygous Familial Hypercholesterolemia
Lipid metabolism	RNA-based	Tryngolza (olezarsen)	Ionis Pharma	None reported	Familial chylomicronemia syndrome
			ological Targ	gets	
IFN-γ	Biological (mAbs)	Emapalumab (Gamifant)	Sobi	None reported	Hemophagocytic Lymphohistiocytosis (HLH)
IL-1	Biological (mAbs)	Canakinumab (Ilaris),	Novartis, Regeneron	None reported	Cryopyrin-Associated Periodic Syndromes (CAPS)

Target	Drug Type	Approved Drugs	Originator	Drugs in Development (Stage)	Indications
		Rilonacept (Arcalyst)			
IL-6	Biological (mAbs)	Siltuximab (Sylvant)	Janssen	None reported	Multicentric Castleman Disease
ΤΝΕ-α	Biological (mAbs)	Infliximab (Remicade), Adalimumab (Humira)	J&J, AbbVie	None reported	Behçet's Disease
Neurological Disorders					
SMN2	Antisense Oligonucleotides	Nusinersen (Spinraza)	Biogen	None reported	Spinal Muscular Atrophy
HTT (Huntingtin)	Antisense Oligonucleotides	None	-	Tominersen (Phase III, Roche), WVE- 003 (Phase I, Wave Life Sciences)	Huntington's Disease
C9orf72	RNA Therapeutics	None	-	BIIB078 (Phase I, Biogen)	ALS, Frontotemporal Dementia
GCase (Glucocerebrosidase)	Small Molecule Chaperones	None	-	Ambroxol (Phase II, Multiple Sponsors)	Gaucher Disease, Parkinson's Disease

Conclusion – The landscape of drug development continues to evolve, fueled by advancements in molecular targeting, personalized medicine, and novel therapeutic platforms. From breakthrough immunotherapies to transformative gene therapies, the strategies outlined in this document represent a paradigm shift in addressing disease mechanisms. The integration of biologics, small molecules, and RNA-based therapeutics has expanded treatment options, enhancing the precision and efficacy of care. Moreover, leveraging global collaborations, adaptive regulatory frameworks, and patient-centric approaches positions the industry to tackle unmet medical needs more effectively.

As research accelerates, these innovations hold the promise of improved outcomes for patients, particularly in areas of high unmet need. By addressing challenges such as regulatory complexities and access barriers, the biopharma industry can continue to lead transformative progress, paving the way for a healthier future. This analysis provides a lens into the future of pharmaceutical innovation, underpinned by a relentless pursuit of medical excellence.

Author: Dr. Jean Chatellier, PhD

Partner, EVP & Managing Director

KYBORA

Email: jean@kybora.com | Cell/WhatsApp: +33 609 102 105